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We formalize the derivation of a generalized coarse-graining n-resolved master equation by introducing a
virtual detector counting the number of transferred charges in single-electron transport. Our approach enables
the convenient inclusion of coherences and Lamb shift in counting statistics. As a Markovian example with
Lindblad-type density matrices, we consider the Born-Markov-secular �BMS� approximation which is a special
case of the non-Markovian dynamical coarse-graining approach. For illustration we consider transport through
two interacting levels that are either serially or parallelly coupled to two leads held at different chemical
potentials. It is shown that the coherences can strongly influence the �frequency-dependent� transport cumu-
lants: in the serial case the neglect of coherences would lead to unphysical currents through disconnected
conductors. Interference effects in the parallel setup can cause strong current suppression with giant Fano
factors and telegraphlike distribution functions of transferred electrons, which is not found without coherences.
We demonstrate that with finite coarse-graining times coherences are automatically included and, consequently,
the shortcomings of the BMS approximation are resolved.
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I. INTRODUCTION

The number of single electrons transferred stochastically
through a small conductor in a given time interval obeys a
statistics which is specific to the underlying transport process
and to the details of the conductor.1–6 The deviations, espe-
cially for uncorrelated charge transfer in single tunnel junc-
tions �Poissonian statistics�, from the Gaussian distribution,
however, are tiny and merely become visible in the tails of
the distribution. Nevertheless, the exploration of the so-
called full counting statistics �FCS� has established an active
subfield of mesoscopic transport in recent years. Although
theory work on FCS in mesoscopic transport is still highly
dominating the field, several stimulating experiments were
reported recently.7–17 For example, the measurement of up to
the 15th-order cumulant of tunneling through a single quan-
tum dot �QD� and the observation of universal oscillations in
FCS �Ref. 16� indicate ongoing activities.

A. Some recent theoretical work on counting statistics

The theoretical study of FCS in quantum transport is
mostly based on the computation of its cumulant generating
function. This turned out to be more convenient for practical
purposes rather than the direct calculation of the distribution
function. Various methods were developed, e.g., the Levitov-
Lesovik formula in the S-matrix formalism,1,2 diagonaliza-
tion of Liouvillians of Markovian master equations18 with
the generalization to frequency-dependent FCS by one of the
authors in Ref. 19, by means of stochastic path-integral for-
mulation for classical stochastical networks,20,21 via a charge
representation method,22 by an effective-field theory,23 with
nonequilibrium Green’s functions,24 in a time-dependent
Levitov-Lesovik approach,25 by a wave-packet formalism,26

or for time-dependent FCS through the formulation by
positive-operator-valued measure.27

The FCS for non-Markovian transport with generalized
master equations were discussed in Ref. 28 and in Ref. 29
wherein the authors introduced an iterative scheme to com-

pute the cumulants. The interrelation between waiting time
distributions and FCS for single-particle transport were stud-
ied in Ref. 30. Esposito et al.31 have shown that the FCS for
tunneling through tunnel junctions obeys a fluctuation theo-
rem relating distribution functions for forward and backward
bias voltages.

FCS and noise can be utilized as an important diag-
nostic probe of quantum coherence and decoherence
mechanisms.32–39 In principle, it turns out that the higher-
order cumulants are very sensitive to coherent effects, as
explicitly shown experimentally and theoretically for the
second-order cumulant �noise� in Ref. 40.

The counting statistics of transport through single QDs
with attached single phonon mode �nanoelectromechanical
systems, Anderson-Holstein model� was explored in Refs.
41–46 and shows that the inelastic scattering processes
strongly modify the current fluctuations.

Further system-based theory on FCS can be found for
bistable systems47 �generic FCS for telegraph current signals
by means of stochastic path integrals�, for Andreev scattering
in an asymmetric chaotic cavity,48 for a QD in the Kondo
regime,49 for Büttikers voltage and dephasing probes by Pil-
gram et al.,50 for spin transfer through ultrasmall quantum
dots,51 for transport through a molecular quantum dot
magnet,52 for chaotic cavities with many open channels,53 for
Andreev reflection,54 and for spin transport with ferromag-
netic leads.55

Belzig studied the FCS of super-Poissonian electron trans-
fer �bunching� in a single multilevel QD caused by dynami-
cal channel blockade.56 The combined counting statistics of
transferred electrons and emitted photons in a single QD re-
veals crossovers between bunching and antibunching statis-
tics for both species.57,58

B. Master equations for single-electron transport

Since we utilize a quantum master equation �ME� we will
provide a brief survey of related previous work. A common
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starting point for a systematic perturbative description of
single-electron transport through localized states attached to
leads �QDs, molecules, short carbon nanotubes, etc.� is the
non-Markovian ME with Born approximation �system-bath
factorization� of the reduced density matrix. The assumption
that the time evolution of the system state only depends on
the present state leads to the Wangsness-Bloch-Redfield
approach.59–62 A further Markov approximation yields a ME
which is widely applied in the transport context, e.g., in Refs.
63–68. A well-known shortcoming of this approximation is
that the positivity of the density matrix is not guaranteed,
see, e.g., Ref. 69 and references therein. To circumvent that,
a secular approximation can be carried out and the ME ac-
quires a Lindblad form.70 Another way to avoid the nonposi-
tivity is the so-called singular-coupling limit where the secu-
lar approximation is not necessary.62,71 Here, we will present
another alternative based on �dynamical� coarse graining.

A different access to the dynamics of the system density
matrix is provided by the Keldysh-contour formulation of
König et al.72,73 This method allows for a systematic dia-
grammatic expansion in the tunnel coupling. The noise for
cotunneling though a single QD were studied in Ref. 74. The
FCS is obtained here by putting the counting fields �ei�� in
the tunnel Hamiltonian by hand.38

Microscopic rate equations for transport through coupled
QDs were derived in Refs. 75 and 76. These works are con-
sidered to be benchmarks for the study of serially coupled
QDs since the MEs turn out to be exact for infinite bias. For
the first time, Gurvitz et al.76 have formulated the ME such
that the system density matrix is resolved with respect to the
number of transferred electrons. The FCS is then readily ob-
tained.

In Ref. 77 Pedersen and Wacker include broadening ef-
fects in the ME description which become important for fi-
nite bias. They take into account the time evolution of coher-
ences between different k states in the leads due to the
tunneling processes. The numerical evaluation of the
k-resolved dynamics becomes rather expensive. However,
the results agree with state-of-the-art methods.78 For that
technique FCS and noise is not considered yet.

Recently, Leijnse and Wegewijs79 reported on a ME ap-
proach for the reduced density using a Liouville-space per-
turbation theory. They systematically expand an effective Li-
ouvillian in Laplace space with respect to the tunnel
coupling. The FCS in that framework has been studied in
Ref. 80.

C. This work

We address the single-electron transport through coupled
QDs either in parallel or in serial configuration for arbitrary
Coulomb interaction strengths between the QDs and finite-
bias voltages. We use a ME based on lowest-order tunnel
coupling. The approach is thus perturbative and cannot cap-
ture Kondo effects. The dynamical coarse-graining �DCG�
method81 prevents nonpositive density matrices. For infinite
coarse-graining times we recover the known Born-Markov-
secular �BMS� approximation whereas for small coarse-
graining times the exact �non-Markovian81,82� dynamics is

obtained. By introducing a virtual detector for the transferred
electrons at one tunnel junction we are able to calculate the
time-resolved FCS and the noise spectrum at one junction.
We will show that for both QD configurations the coherences
in the energy eigenbasis �off-diagonals of the system density
matrix� play an important role and therefore cannot be ne-
glected. Particularly, in the parallel setup interferences can
lead to strong exponential current suppression with negative
differential conductance.71,83,84 This accompanies with giant
super-Poissonian Fano factors, Dicke-type noise spectra and
broad distribution functions of transferred electrons caused
by the telegraphlike current signal. For the serial setup the
BMS approximation �vanishing coherences in the energy
eigenbasis� leads to unphysical behavior when the tunnel
coupling between the dots is small and can be fixed by as-
suming a finite coarse-graining time. In our computations the
Lamb shift terms �level renormalization85� are always in-
cluded and their effect is visible when populations and co-
herences in the energy eigenbasis couple.

In Sec. II we show how we introduce a virtual detector to
the QD system and how we obtain the FCS and the noise
spectrum. The coarse-graining method and the BMS approxi-
mation are presented in Sec. III. The models, two QDs in
series and in parallel are introduced in Secs. IV A and IV B,
respectively. Section V contains the equilibrium results, Sec.
VI the results for the serial configuration and Sec. VII the
results for the parallel setup. In Appendices A and B we
provide the DCG Liouvillians for parallel and serial setups,
respectively. The evaluation of the Lamb shift terms appears
in Appendix C.

II. COUNTING STATISTICS BY A VIRTUAL DETECTOR

When one wants to describe counting statistics with a
master equation approach, one is first faced with the problem
that the number of tunneled particles is actually a bath and
not a system observable. In addition, for systems with coher-
ences it appears not so trivial to identify matrix elements of
the Liouville superoperator with jump superoperators. There-
fore, we perform the counting statistics by adding a virtual
detector with infinitely many eigenstates in, e.g., the right
lead. Formally, this is done by modifying the tunnel
Hamiltonian86

di � ckR
† → di � b†

� ckR
† , di � ckL

† → di � 1 � ckL
† , �1�

where di /di
† and ck� /ck�

† denote the annihilation/creation op-
erators in the dot system and the lead �=L ,R, respectively.
The detector excitation operator

b† = �
n=−�

+�

�n + 1��n� �2�

increases the occupation of the detector by one each time an
electron is created in the right lead. When we formally treat
the detector operators b and b† as system operators, we may
perform the conventional Born-Markov-secular approxima-
tion as presented, e.g., in Ref. 62 and obtain a Lindblad70

type master equation. For example, assuming a two-level dot
system characterized by Fock states �n1n2��ni� �0,1�� the
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Lindblad form would operate in an infinite-dimensional Hil-
bert space spanned by �00� � �n�, �01� � �n�, �10� � �n�, and
�11� � �n�. We can generally decompose the density matrix in
this Hilbert space as

�S�t� 	 �
n,m=−�

+�

��nm��t� � �n��m� , �3�

where ��nm��t� act on the dot Hilbert space spanned by �00�,
�01�, �10�, �11� and can thus be represented as 4�4 matrices.
By taking the “matrix elements” ��n��t�	��nn��t�
= �n��S�t��n� we see that the resulting n-resolved density ma-
trices are related via36

�̇�n� 	 L0��n� + L+��n−1� + L−��n+1�, �4�

which implies that we can ignore dynamics of ��nm��t� for
m�n. Note that the above approach also captures the small
bias range leading to bidirectional transport, which leads to
the occurrence of both ��n+1� and ��n−1� in contrast to other
commonly used n-resolved master equations.87–90 The gener-
alized Liouvillian superoperator L0 contains transitions be-
tween the system and the left lead, whereas L+ corresponds
to jumps from the system toward the right lead, and vice
versa for L−. Now, according to the measurement postulate91

counting m particles at time t in the detector would project
the density matrix, Eq. �3�, to

�S��t� =
��m��t�

Tr���m��t��
� �m��m� , �5�

such that we may interpret

Pn�t� 	 Tr���n��t�� �6�

as the probability that n particles will be found in the detec-
tor when we measure at time t. Note however that the
n-resolved density matrices ��n��t� derived in this way are
still positive semidefinite since Eq. �4� corresponds to a
Lindblad form in a higher-dimensional Hilbert space.

The n-resolved master equation, Eq. �4�, can be Fourier
transformed ��� , t�	�n��n��t�ein�, such that we can consider
the Markovian cumulant generating function SMK�� , t� for
the probability distribution, Eq. �6�,

eSMK��,t� 	 �
n

Pn�t�ein� = Tr�eL���t�̄� , �7�

where L���	L0+e+i�L++e−i�L− and the initial density ma-
trix is conventionally chosen as the stationary state 
fulfilling
L�0��̄=0�. If there is a distinct eigenvalue of the Fourier-
transformed Liouvillian with a largest real part �0���, this
eigenvalue will dominate the evolution for large times t

eSMK��,t� = Tr��0
0e�0���t + �0

1e�1���t + ¯� � e�0���t Tr��0
0�

= e�0���t, �8�

where �0�0�=0 �stationary state�. In this limit, the deriva-
tives of the cumulant-generating function can be approxi-
mately determined from

�− i���kSMK��,t���=0 � �− i���k�0�����=0t . �9�

For the Markovian stationary current we obtain from the
cumulant-generating function

I = − i Tr�L��0��̄� , �10�

where conventionally �̄ denotes the �normalized� stationary
state of L�0�, see also Refs. 92 and 93 for similar expres-
sions.

The Markovian finite-frequency noise can be obtained
from the second cumulant via the MacDonald noise
formula94

SR�	� = 

0

�

	 sin�	t�
d

dt
��n2�t�� − �n�t��2�dt , �11�

where the regularization

	 sin�	t� → lim

→0


	 sin�	t� + 
 cos�	t��e−
t �12�

is implied.95 It is straightforward to show that the second
term in the McDonald formula �11� is given by �n�t��= It
with the Markovian current, Eq. �10�, and one can analyti-
cally obtain the associated integral. The first term in Eq. �11�
can be written as a Laplace transform, such that one finally
obtains for the frequency-dependent noise

SR�	� = R Tr��2L��0�
1

i	1 + L�0�
L��0� − L��0���̄� ,

�13�

where L��0�	��L��� ��=0 and L��0�	��
2L��� ��=0, see also

Refs. 92 and 93 for similar relations. Note that L�0� is sin-
gular, such that in order to obtain the zero-frequency limit of
the above expression, one may either evaluate the pseudoin-
verse of L�0� or directly deduce it from the dominant eigen-
value S�0�=−�0��0�.

III. COARSE-GRAINING AND THE BMS
APPROXIMATION

A. Coarse-graining master equation

It is well known that for nontrivial systems the conven-
tional Born-Markov approximation scheme does not neces-
sarily lead to Lindblad-type master equations. In order to
obtain these, an additional secular approximation �termed
BMS throughout this paper� is required. Alternatively, the
singular coupling limit also yields Lindblad-type master
equations.62,71

However, it is also known that Lindblad-type master
equations can also be obtained using coarse-grained time
derivatives.96,97 The Liouvillian will then depend on the
coarse-graining time scale. For example, one may match the
perturbative solution to the equation

d

dt
���,t� = L������,t� �14�

for the reduced density matrix 
using that L��� is small in the
interaction picture� with the perturbative second-order solu-
tion of the von-Neumann equation for the full density matrix
in the interaction picture at coarse-graining time �
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eL�����S
0 = TrB�U����S

0
� �B

0 U†���� . �15�

In the above equation, U��� denotes the time evolution op-
erator in the interaction picture �including time ordering�.
For a decomposition of the interaction Hamiltonian

HSB = �
�=1

M

A� � B� = HSB
† �16�

into system �A�� and bath �B�� operators Eq. �15� defines the
corresponding Liouville superoperator as

L���
�� = �
��=1

M
1

�



0

�

dt1dt2
− C�̄�̄�t1,t2�
�t2

− t1��A�
† �t1�A�

† �t2� − C���t1,t2�
�t1

− t2�A��t1�A��t2�� + C�̄��t1,t2�A��t2��A�
† �t1�� ,

�17�

which can be shown to be in Lindblad form.98 In the above
equation, the time dependence arises from the interaction
picture and the generalized bath correlation functions have
been introduced as

C���t1,t2� 	 TrB�B��t1�B��t2��B� ,

C�̄��t1,t2� 	 TrB�B�
† �t1�B��t2��B� ,

C�̄�̄�t1,t2� 	 TrB�B�
† �t1�B�

† �t2��B� . �18�

With the relation 
�x�= 1
2 
1+sign�x�� one may separate the

Liouville superoperator, Eq. �17�, into dissipative terms of
Lindblad form70 and nondissipative terms �Lamb shift� that
can be expressed by a commutator LLS����=−i
Heff��� ,��
with an effective Lamb-shift Hamiltonian Heff���=Heff

† ���.
For equilibrium baths �
HB,�B�=0� the bath correlation
functions, Eq. �18�, will only depend on the difference of
their time arguments and we may introduce the even ��ij�
and odd ��ij� Fourier transforms

Cij�t� 	
1

2�



−�

+�

�ij�	�e+i	td	 ,

Cij�t�sgn�t� 	
1

2�



−�

+�

�ij�	�e+i	td	 �19�

of the bath correlation functions. With these, the two time
integrations in Eq. �17� may be performed analytically and
just the one-dimensional integral over 	 remains.

B. Coarse-graining schemes

In order to go beyond conventional Markovian ap-
proaches, the coarse-graining time � must scale with the
physical time.81 For example, in order to approximate the
short-time dynamics of the exact solution well �and thereby
also the dynamics of the non-Markovian master equation�, �
should scale linearly with the physical time. In contrast to
conventional Markovian master equations, the DCG �Refs.

81 and 98� therefore formally solves all coarse-graining mas-
ter Eq. �14� and then fixes the coarse-graining time parameter
�= t in the solution

��t� 	 eL�t�·t�0. �20�

For the pure-dephasing spin-boson model, this choice yields
the exact solution for the reduced density matrix.

In addition, one can show analytically, that in the limit
�→� �an equilibrium bath assumed�, the Born-Markov-
secular approximation is reproduced �see Ref. 81 for the de-
tailed proof�: the result of the temporal integrations in Eq.
�17� may be phrased in terms of band-filter functions
sinc�x�	sin�x� /x, which converge to Dirac � distributions
for �→�, see Appendix A for an example. Thus, in this limit
all integrals collapse and, Eq. �17�, finally reduces to the
BMS Liouvillian. In the short-time limit, we automatically
approach the exact solution �and of course also the non-
Markovian master equation� by construction and for all times
positivity is automatically preserved.

However, in the long-time limit it is not a priori clear why
the coarse-graining time � should always scale linearly with
the physical time t. In that case, we would always obtain the
BMS stationary state in the long-time limit. This state has
nice classical properties and yields the exact �nonperturba-
tive� solution for the spin-boson pure dephasing model but
conflicts with some exact quantum solutions—as already ex-
emplified by the single-resonant level model.82,98 Later on,
we will demonstrate further shortcomings of the BMS ap-
proximation. Especially when one goes beyond the weak-
coupling limit, a finite coarse-graining �FCG� time may lead
to better results, such that one might alternatively investigate
dependencies of the form

��t� =
t

1 +
t

�max

. �21�

Therefore, when one is only interested in stationary �Mar-
kovian� results, one may simply evaluate L��max�.

C. Application to transport

It is rather straightforward to apply the coarse-graining
method to n-resolved master equations: Eq. �4� will appear
as

�̇�n���,t� 	 L0�����n���,t� + L+�����n−1���,t� + L−�����n+1���,t� ,

�22�

and we can apply the same arguments that lead to Eq. �7� to
define a non-Markovian cumulant-generating function

eSDCG��,�,t� 	 Tr�eL��,��t�̄� , �23�

where consistency with the BMS approximation is achieved
by L�0�= lim

�→�

L�0,�� and we have L�0��̄=0. When observ-

ables �cumulants� should be calculated, the actual scaling of
the coarse-graining time with the physical time is of impor-
tance, since from the above equation we can deduce the
time-dependent cumulants by taking derivatives with respect
to � and t. For example, we will refer to
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I�t� 	
d

dt
�n
��t�,t�� =

d

dt
�− i���SDCG
�,��t�,t���=0 �24�

as the time-dependent current. When � is fixed �Markovian
case�, this current becomes time independent and when
�→�, we obtain the BMS current.

D. Decomposing the Fock space

It should be noted that at first sight fermionic hopping
terms appear incompatible with the tensor-product represen-
tation of the interaction Hamiltonian �16�: operators acting
on different Hilbert spaces commute by construction,
whereas in the fermionic hopping terms the dot and lead
operators anticommute �this feature is also exploited in the
exact solutions82,98�. However, we can map such hopping
terms to a tensor-product representation. From the original
anticommuting fermionic operators �denoted with overbars�,
such a representation can be obtained from the decomposi-

tion d̄1=�1
+

� 1 � 1, d̄2=�1
z

� �2
+

� 1, and c̄ka=�1
z

� �2
z

� cka,
where �+= 1

2 ��x+ i�y�, which is similar to a Jordan-Wigner
transform. In this decomposition, the first two Hilbert spaces
refer to the two-dimensional spaces of the first and second
system site, respectively, and the last Hilbert space is simply
the �infinite-dimensional� Fock space of the leads, within
which the cka operators obey the usual fermionic anticommu-
tation relations. For the double-dot systems considered here,
the Hilbert space of the system is defined as the Fock space
with up to two particles, spanned by the basis
�00� , �01� , �10� , �11�. In this system Hilbert space we can
now define new fermionic operators via d1=−�1

+
� �2

z and
d2=−1 � �2

+. The generalization of these mappings to sys-
tems with more than two sites is straightforward. Such map-
pings appear to be usually performed tacitly in the literature,
see, e.g., Refs. 36, 89, and 99.

IV. MODEL HAMILTONIANS

A. Two levels in series

We consider the Hamiltonian40,75,76,87

H = HS + HSB + HB,

HS = 
1d1
†d1 + 
2d2

†d2 + Ud1
†d1d2

†d2 + Tc�d1d2
† + d2d1

†� ,

HB = �
k



kLckL
† ckL + 
kRckR

† ckR� ,

HSB = �
k


tkLd1 � ckL
† + tkRd2 � ckR

† + H.c.� , �25�

where d1/2
† create an electron with different quantum numbers

on the dot, respectively, and ckL/R
† create electrons with mo-

mentum k in the left/right lead. The parameters 
i denote the
single-particle energies, U models the Coulomb interaction,
and Tc denotes the interdot tunneling rate. This spinless
model could be motivated by a large magnetic field that leads
to complete spin polarization in the leads, such that only one
spin would need to be considered, or—alternatively—by or-

bitals where all tunneling processes are completely symmet-
ric in the electronic spin, such that it may be omitted from
our considerations. We assume the symmetric bias case, such
that the chemical potential for the left and right leads are
kept at �L=+V /2 and �R=−V /2, respectively, where V de-
notes the bias voltage. The model is depicted in Fig. 1. The
Hilbert space of the system can either be spanned by the
localized �particle� basis �00� , �01� , �10� , �11� or the hybrid-
ized eigenbasis of the system Hamiltonian

�E0� = �00� ,

�E−� =
1

�N

�� + ��2 + 4Tc

2��01� + 2Tc�10�� ,

�E+� =
1

�N

− 2Tc�01� + �� + ��2 + 4Tc

2��10�� ,

�E3� = �11� , �26�

with the normalization N=4Tc
2+ ��+��2+4Tc

2�2 and the
single-particle splitting �	
1−
2. It can be shown easily
that for energetic degeneracy �=0 the energy eigenbasis re-
mains nonlocal even in the limit Tc→0. We will see that in
the BMS approximation this leads to unphysical artifacts for
some parameter values.

With introducing a virtual detector as described in Sec. II,
we identify four coupling operators in the interaction Hamil-
tonian

A1 = d1 � 1, B1 = �
k

tkLckL
† ,

A2 = d1
†

� 1, B2 = �
k

tkL
� ckL,

A3 = d2 � b†, B3 = �
k

tkRckR
† ,

A4 = d2
†

� b, B4 = �
k

tkR
� ckR. �27�

The resulting expressions for the bath correlation functions
and the Liouville superoperator become rather lengthy in the
general case but their derivation is outlined in Appendix A.
We assume a continuum of bath modes, such that we may
introduce the tunneling rates

FIG. 1. �Color online� Depending on the bias voltage V, par-
ticles may travel from left to right or vice versa through the effec-
tive double dot system. Setting one tunneling rate �tkL, tkR, or Tc� to
zero inhibits the current.
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�L�	� 	 2��
k

�tkL�2��	 − 
kL� ,

�R�	� 	 2��
k

�tkR�2��	 − 
kR� , �28�

which we will assume to be approximately constant �flat-
band limit�. Note however, that for the evaluation of the
Lamb-shift terms it is necessary to assume a cutoff, see the
discussion in Appendix C.

Generally, we observe that for finite coarse-graining times
�, the Liouville superoperator, Eq. �17�, couples the six ma-
trix elements �00,00 ,�−,− ,�+,+ ,�11,11 ,�−,+ ,�+,− to each other.
In contrast, in the BMS limit ��→�� and assuming a non-
degenerate spectrum, the populations �00,00 ,�−,− ,�+,+ ,�11,11
in the energy eigenbasis will decouple from the coherences
�−,+ ,�+,−, such that it suffices to consider a 4�4 Liouville
superoperator. This is a general property of the secular
approximation62 �also rotating wave approximation37�. When
the single-charged states become energetically degenerate

1=
2 and Tc=0, this decoupling does not take place in the
BMS limit.

B. Two levels in parallel

We consider the Hamiltonian �compare also, e.g., Refs.
36, 37, 71, 83, and 93�

H = HS + HSB + HB,

HS = 
1d1
†d1 + 
2d2

†d2 + Ud1
†d1d2

†d2,

HB = �
k


+ 
kLckL
† ckL + 
kRckR

† ckR� ,

HSB = �
k


tkL
1 d1

†
� ckL + tkL

2 d2
†

� ckL + tkR
1 d1

†
� ckR

+ tkR
2 d2

†
� ckR + H.c.� , �29�

where we now have four tunneling rates instead of two for
the serial model, Eq. �25�. As before, we omit the spin from
our considerations. Note that in this model, there is no inter-
dot hopping, but the model becomes nontrivial due to the
Coulomb interaction term. The model is depicted in Fig. 2.

With introducing a virtual detector as in Sec. II one can
identify eight coupling operators in the interaction Hamil-
tonian

A1 = d1 � b†, B1 = �
k

tkR
1�ckR

† ,

A2 = d1
†

� b, B2 = �
k

tkR
1 ckR,

A3 = d2 � b†, B3 = �
k

tkR
2�ckR

† ,

A4 = d2
†

� b, B4 = �
k

tkR
2 ckR,

A5 = d1 � 1, B5 = �
k

tkL
1�ckL

† ,

A6 = d1
†

� 1, B6 = �
k

tkL
1 ckL,

A7 = d2 � 1, B7 = �
k

tkL
2�ckL

† ,

A8 = d2
†

� 1, B8 = �
k

tkL
2 ckL. �30�

With introducing the continuum tunneling rates

�L,1/2�	� 	 2��
k

�tkL
1/2�2��	 − 
kL� ,

�R,1/2�	� 	 2��
k

�tkR
1/2�2��	 − 
kR� ,

�R/L�	� 	 2��
k

tkR/L
1� tkR/L

2 ��	 − 
kR/L� �31�

we outline the derivation of the explicit Liouville superop-
erator in Appendix B. Note that now some tunneling rates
may assume complex values. In the flat-band limit,
we assume them as frequency independent, which implies
��L�2=�L1�L2 and ��R�2=�R1�R2.

Generally, we find that the Liouville superoperator
couples the six matrix elements �00,00 ,�01,01 ,�10,10 ,�11,11 ,
�01,10 ,�10,01. However, in the BMS limit ��→�� the pop-
ulations �00,00 ,�01,01 ,�10,10 ,�11,11 will—for lifted energetic
degeneracy 
1�
2—decouple from the coherences
�01,10 ,�10,01. For energetic degeneracy however, this decou-
pling does not take place in the BMS limit. The nondegen-
erate BMS case will be termed rate equation �4�4 Liouville
superoperator�, whereas we will refer to the degenerate BMS
case as quantum master equation �6�6 Liouville superop-
erator�.

Thus, one can see that the BMS Liouvillian behaves dis-
continuously with respect to the Hamiltonian parameters,
which is of course also reflected in observables. We show in
Appendix C how one obtains the Lamb-shift terms �odd Fou-
rier transform� for Lorentzian-shaped bands.

FIG. 2. �Color online� Depending on the bias voltage V, par-
ticles may travel from left to right or vice versa through the effec-
tive double dot system. For negligible Coulomb interaction U one
has two independent channels.
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V. BMS EQUILIBRIUM RESULTS AND FLUCTUATION-
DISSIPATION RELATIONS

For a system in equilibrium �either obtained by choosing
identical chemical potentials in both reservoirs �L=�R=� or
by turning off one coupling �e.g., �L=0 and �R=� or �R
=0 and �L=� in the serial case� we obtain equilibration of
both temperature and chemical potentials with that of the
reservoir. This holds for both models, Eqs. �25� and �29�.
More explicitly, when the reservoir is in the state

�B =
e−��HB−�NB�

ZB
, �32�

the resulting BMS Liouville superoperators has the steady
state

�̄S =
e−��HS−�NS�

ZS
, �33�

where NS=d1
†d1+d2

†d2 is the system particle number operator.
The equilibration of both temperature � and chemical poten-
tial � between system and reservoir for these systems is a
remarkable result since to our knowledge only equilibration
of temperatures has been shown so far.62

In all analytically accessible cases, we can verify the
Johnson-Nyquist �fluctuation-dissipation� relation100,101

S�0��V=0 = � 2

�

dI

dV
�

V=0
, �34�

which requires bidirectional n-resolved master equations of
the form �4� and appears to be a general feature of the BMS
approximation.99 For zero-bias voltage V=0 we have shown
as a sanity check that the resulting current vanishes.

A fluctuation-dissipation relation for nonlinear transport
based on detailed balance has recently been derived in
Ref. 102: �eA� ·Q� �=1 with A� 	e��VL ,VR�=e��V /2,−V /2� and
Q� 	�nL ,nR� for two terminals and symmetric bias. We have
checked this relation for a single noninteracting level and
find it satisfied within the BMS approximation only up to
third order in V. However, since we only consider counting
at the right junction the check for the interacting systems is
beyond the scope of the present work.

VI. TRANSPORT RESULTS: SERIAL CONFIGURATION

A. BMS rate equation

The BMS current in Coulomb-blockade but high-bias
limit �CBHB, formally obtained by the limits
limV→� limU→� such that always V�U� equates to

ICB =
�L�RTc

2

�
1 − 
2�2�L + �2�L + �R�Tc
2 , �35�

which is also found in the numerical solution for the station-
ary current, see Fig. 3. The above result differs from known
results in the literature75,76,87 by a missing term �L�R

2 /4 in

the denominator. This difference is of higher order than the
validity of the perturbation theory. However, this leads to the
unphysical artifact that in our case for 
1=
2 the current
becomes independent on the interdot hopping rate Tc, which
contrasts with the expectation that it should always vanish
for Tc→0. The main reason for this failure of the BMS ap-
proximation lies in the use of the nonlocalized energy eigen-
basis during the secular approximation procedure: tunneling
may occur into nonadjacent eigenstates even when Tc is
small, which finally leads to the observed current. When the
secular approximation is not performed �technically, by using
a finite maximum coarse-graining time�, we will see that the
current vanishes for Tc→0 as expected, see Sec. VI B. In the
actual infinite-bias case �formally obtained by the limit
limV→� such that we keep finite U� we obtain the stationary
current

I� =
�L�R��L + �R�Tc

2

�
1 − 
2�2�L�R + ��L + �R�2Tc
2 , �36�

which also displays the same artifact as the Coulomb-
blockade current, Eq. �35�, for degenerate single-particle en-
ergies, but is, as one would expect—symmetric under ex-
change of L and R. This current is also found in the
numerical solution, see Fig. 3, and differs from87 by a miss-
ing term �L�R��L+�R�2 /4 in the denominator. The current-
voltage characteristics does now exhibit several current steps
since we explicitly allow for a doubly occupied system.

FIG. 3. �Color online� Stationary Markovian current versus bias
voltage for the serial double dot for different single-particle ener-
gies. Other parameters have been chosen as Tc=1.0, U=5.0, �L

=�R=0.12=�, and �=10.0. For degenerate single-particle energies
�black solid line� the current is point symmetric around the origin.
This does not persist for nondegenerate single-particle energies and
becomes strongly pronounced for large splittings �	
1−
2. For

1=−
2 one observes three nonvanishing plateau currents for both
positive and negative bias voltages �given a sufficiently low tem-
perature�. The first current step enables transport by transitions from
�00�→ �E−� and �00�→ �E+�, and at the second and third current
steps the additional channels �E+�→ �11� and �E−�→ �11� are
opened. It is visible that with large level splitting �bold, green�, the
second plateau equilibrates with the third one for positive bias,
whereas it approaches the first plateau for negative bias. This is a
localization effect �for explanations see the text�.
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Since we have chosen symmetrized single-particle energies
�
2=−
1�, the lowest two transport channels are not distin-
guished. Naturally, the current-voltage characteristics is no
longer point symmetric for different single-particle energies.
In addition, when the splitting is significantly larger than the
interdot tunneling rate Tc, we see in Fig. 3 �bold green curve�
that one transport channel is strongly suppressed. This effect
can be interpreted via the localization of the wave functions:
for �
1−
2��Tc �large splitting�, the eigenvectors, Eq. �26�,
become localized, e.g., for 
1�
2 one obtains that �E+�
→ �10� and �E−�→ �01�. When they are above the Fermi sur-
face of their adjacent lead, they may not contribute to trans-
port, such that only one state ��E+� for positive bias and �E−�

for negative bias� mediates the transport. Naturally, this also
leads to asymmetries in the voltage-dependent zero-
frequency Fano factor, see Fig. 4. Note that for extremely
large splittings between the single-particle energies 
i �con-
stant interdot tunneling rate Tc assumed� the Coulomb-
blockade assumption may even become invalid �not shown�,
as the energy for the doubly charged system may fall be-
tween the two single-charged energies �not shown�.

From Eq. �13� we may calculate the finite-frequency noise
for the right lead and we obtain for the frequency-dependent
Fano factor FR�	�	SR�	� / �I� in the CBHB regime the
expression

FR
CB�	� = 1 +

2�L�RTc
2��R
�2��L − �R� − 2�RTc

2� − 2��2 + 4Tc
2�	2�


�2�L�R + �R�effTc
2�2 + ��2 + 4Tc

2�
�2��L
2 + �R

2� + ��eff
2 + �R

2�Tc
2�	2 + ��2 + 4Tc

2�2	4 , �37�

where we have used the short-hand notation �	
1−
2

and �eff	2�L+�R. The zero-frequency limit is depicted in
Fig. 4, where the numerical solution coincides with the
above result in the CBHB regime. The difference between
the above zero-frequency Fano factor and the Fano factor
in Ref. 87 is of the order O��L�R /Tc

2�. It can also be deduced
that the zero-frequency limit of Eq. �37� becomes super-
Poissonian �indicating bunching� �Refs. 103–107� when the
right-associated tunneling rate becomes significantly smaller
than the left-associated one �R�

�L

1+2Tc
2/�2 , which corresponds

to a highly asymmetric situation. Assuming similar single-
particle energies ��=0� the zero-frequency version of Eq.

�37� reproduces previous results in the literature.92 Assuming
equal tunneling rates �L=�R we see that the frequency-
dependent Fano factor in BMS approximation has two
minima only if the splitting between the single-particle ener-
gies is larger than the tunneling rate ����= �
1−
2�
���5−2�Tc��0.49�Tc�� and is featureless �only one mini-
mum� otherwise. This is well confirmed in the numerical
solution, see the solid lines in Fig. 5. Even when one has
two minima in the finite-frequency noise, Fig. 6 demon-
strates that this only happens in the CBHB limit. For the
frequency-dependent Fano factor in the infinite-bias limit we
obtain

FIG. 4. �Color online� Zero-frequency Fano factor versus bias
voltage for different single-particle energies. Parameters and color
coding coincide with Fig. 3. For degenerate single-particle energies
�black� we have a symmetric Fano factor. For large splittings �
	
1−
2 �green� the equilibration behavior of the Fano plateaus
coincides with that of the current plateaus. The peak at the origin
results from �thermal� Nyquist noise, cf. Ref. 92.
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FIG. 5. �Color online� Frequency-dependent Fano factor FR�	�
for different splittings in Coulomb-blockade high-bias �CBHB,
solid� and infinite-bias �dashed� limit versus 	. Other parameters
have been chosen as Tc=1.0, U=5.0, �L=�R=0.1=�, and �
=10.0. The frequency-dependent Fano factor exhibits two minima
that are for large splittings ��Tc situated at 	�= �� �solid lines�.
In the infinite-bias limit, this feature is generally lost �dashed lines�.
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FR
��	� = 1 −

2�L�RTc
2
�2��L

2 − �L�R + �R
2 + 	2� + Tc

2��2 + 4	2��
��2�L�R + �2Tc

2�2 + ��2 + 4Tc
2�
�2��L

2 + �R
2� + 2�2Tc

2�	2 + ��2 + 4Tc
2�2	4 , �38�

where we have again used the abbreviation �	
1−
2 but
this time use �=�L+�R. The zero-frequency limit is well
reproduced in Fig. 4 in the infinite-bias regime. As before,
the difference between the above zero-frequency Fano factor
and the Fano factor in Ref. 87 is of the order O��L�R /Tc

2�. It
is straightforward to show that the zero-frequency version of
the Fano factor, Eq. �38�, may never become super-
Poissonian. In addition, for equal tunneling rates �L=�R the
infinite-bias frequency-dependent Fano factor has only one
minimum—regardless of the splitting of the single particle
energies, see the dashed lines in Fig. 5.

Finally, Fig. 6 demonstrates the smooth transition of the
frequency-dependent Fano factor from the Coulomb-
blockade regime toward the infinite-bias limit: for small
positive bias, the frequency-dependent Fano factor becomes
slightly super-Poissonian for finite 	 and Poissonian for
	=0, compare also Fig. 4. In the CBHB regime �solid green
line�, we observe a sub-Poissonian Fano factor with two
minima and in the infinite-bias regime �dashed green line�,
the two minima merge into one.

B. Coarse-graining results

For finite coarse-graining times, the coarse-graining Liou-
ville superoperator does not resemble the BMS approxima-
tion but nevertheless preserves positivity �Lindblad form�,
compare the discussion in Sec. III. We have seen that for
degenerate single-particle energies 
1=
2, the BMS currents
��→�� become independent of the interdot tunneling rate
Tc, compare Eqs. �35� and �36�. That is, when Tc→0, one
still has a nonvanishing current, which is completely unrea-
sonable, as in this limit one has two single levels coupled to

different leads. Note however, that the exact limit Tc→0
would in this case lead to a different BMS quantum master
equation with a 6�6 Liouvillian that does not admit any
current. This unphysical behavior is not found for a finite
coarse-graining time, see Fig. 7. For a finite coarse-graining
time, the stationary current vanishes quadratically as the in-
terdot tunneling rate Tc goes to zero, which is consistent with
earlier results for the CBHB regime in the literature.75,76 For
larger interdot tunneling rates, the magnitude of the station-
ary current quickly saturates, such that the only effect of a
varying Tc is the increasing level splitting for the single-
charged states �−� and �+� �emerging additional current
steps�. Therefore, for large Tc we obtain the previous results
of the BMS approximation �compare, e.g., orange curve in
Fig. 7 with the black curve in Fig. 3�. This behavior is quite
general: when the coarse-graining time is larger than the in-
verse level splitting �in our case between the single-charged
states�, one can show that the coarse-graining results and
BMS results coincide.

Regarding the dynamical coarse-graining approach,81,98

these findings demonstrate that for the serial double dot con-
sidered here, the coarse-graining time must not be sent to
infinity. To obtain non-Markovian effects, it must for small
times scale linearly with the physical time �= t, but for large
times it must saturate �=�max in order to avoid artifacts such
as currents through disconnected structures.

FIG. 6. �Color online� Frequency-dependent Fano factor FR�	�
for large splitting versus bias voltage and 	. Other parameters have
been chosen as in Fig. 5 but the single-particle energies have been
fixed at 
1=+1.0 and 
2=−1.0. In the CBHB regime �e.g., V= �5�,
there are two valleys corresponding to two minima of the Fano
factor, whereas this feature is lost in the infinite-bias regime �e.g.,
V= �20�, compare also Fig. 5.
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FIG. 7. �Color online� Plot of the stationary current versus bias
voltage for different interdot tunneling rates Tc. The coarse-graining
time has been chosen as �=100, the inverse of the coupling
strengths �L and �R. For small Tc, we observe a quadratic growth of
the current magnitude �dashed curves�, which quickly saturates. For
larger Tc �solid lines�, the current magnitude becomes independent
of Tc as also seen in the BMS approximation for 
1=
2, but the
level splitting between the single-charged states �−� and �+� is
slowly resolved �emerging additional current step�. Other param-
eters were chosen as 
1=
2=0, U=5.0, �L=�R=0.12, and �=10.0.

TRANSPORT STATISTICS OF INTERACTING DOUBLE… PHYSICAL REVIEW B 80, 245107 �2009�

245107-9



VII. TRANSPORT RESULTS: PARALLEL
CONFIGURATION

A. BMS rate equation

When the single-particle energies are nondegenerate

1�
2, the equations for the populations decouple from the
equations for the coherences, see Appendix B for details.
For these rate equations we obtain in the CBHB limit the
current

ICB =
��L1 + �L2��R1�R2

�L1�R2 + �L2�R1 + �R1�R2
. �39�

For equal left- and right-associated tunneling rates
��L1=�L2=�L , �R1=�R2=�R� we recover the known
result108 2�L�R / �2�L+�R�. Clearly, the above current van-
ishes if just one of the right-associated tunneling rates goes
to zero. This is a Coulomb-blockade effect: due to the high-
bias limit, an electron gets stuck in the orbital with the
vanishing right-associated tunneling rate, compare also Fig.
2. This electron blocks the transport through the other
channel by the Coulomb interaction. The current, Eq. �39�,
is also well confirmed by the numerical solution, see Fig. 8.
In contrast, in the actual infinite-bias case we obtain the
current

I� =
�L1�L2��R1 + �R2� + ��L1 + �L2��R1�R2

��L1 + �R1���L2 + �R2�
, �40�

which is again completely symmetric under exchange R and
L. When one left- or right-associated tunneling rate vanishes,
we obtain the current of a single-resonant level,82 which is
independent of the remaining tunneling rate associated with
the blocked channel: as the infinite-bias limit explicitly al-
lows double occupancy, we do not observe Coulomb block-
ade in this case. Also the infinite-bias current is well reflected
in the numerical solution in Fig. 8. We see that for the rate
equations, the allowance of doubly occupied states simply
opens more transport channels, which are visible by at most
four steps in the current-voltage characteristics. Interestingly,
the height of these steps is independent on the level splitting
but is just determined by the tunneling rates. However, the
�sequential tunneling� excitation spectrum of the system
Hamiltonian can be probed by the position of the current
steps �sufficiently low temperatures provided�. Note that the
current for �1=�2 provides the analytic continuation for
nearly degenerate energies. In the degenerate case the quan-
tum master equation with coherences has to be applied as it
will be shown in Sec. VII B. However, when additional
dephasing processes lead to a decay of coherences, the rate-
equation approach can still be motivated.

For the frequency-dependent Fano factor we obtain in the
Coulomb-blockade high-bias limit

FR
CB�	� =

N0 + N1	2 + 	4

D0 + D1	2 + 	4 , �41�

where we have chosen the abbreviations

N0 = �L2�2�L1 + �L2��R1
2 − 2�L1�L2�R1�R2

+ ��L1
2 + 2�L1�L2 + �R1

2 ��R2
2 ,

N1 = ��L1 + �L2�2 + �R1
2 + �R2

2 ,

D0 = 
�L2�R1 + ��L1 + �R1��R2�2,

D1 = 
�L1
2 + �R1

2 + 2�L1��L2 + �R1� + ��L2 + �R2�2� .

�42�

For zero frequency and similar left and right tunneling rates
��L1=�L2 and �R1=�R2� this coincides with previous
results,93 see also Table I 
column �ii�� in Ref. 109. As ex-
pected from the current in the CBHB regime, it can be
checked easily that the zero-frequency version of the above
Fano factor is always super-Poissonian when one of the
right-associated tunneling rates vanishes �bunching due to
dynamical channel blockade� and is always sub-Poissonian
when one of the left-associated tunneling rates vanishes.
Super-Poissonian Fano factors for asymmetric systems are
well-known in the literature.92 The corresponding infinite-
bias Fano factor equates to

FIG. 8. �Color online� Stationary Markovian rate-equation cur-
rent versus bias voltage for the parallel double dot for different
single-particle energies. Other parameters have been chosen as
U=5.0, �L1=�L2=�R1=�R2=0.12=�, and �=10.0. For sufficiently
low temperature, the current steps may be found at the �doubled�
excitation spectrum of the system Hamiltonian �sequential tunnel-
ing limit�. As all tunneling rates are assumed equal, the curves are
always point symmetric around the origin. For sufficiently large
splittings �green curve� and low temperatures one may resolve be-
tween different transport channels. The height of the plateaus is
independent of the system energies. For symmetric single-particle
energies one has three plateaus with a nonvanishing current. With
increasing splitting �green�, the second plateau broadens thereby
annihilating the first one. This happens when the state �11� becomes
energetically more favorable than �10�, such that the Coulomb-
blockade assumption is not applicable.
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FR
��	� = 1 – 2 �

�L1
2 �R1

2 ��L2 + �R2�
��L1 + �R1�2 + 	2 +

��L1 + �R1��L2
2 �R2

2

��L2 + �R2�2 + 	2

�L1�L2��R1 + �R2� + ��L1 + �L2��R1�R2
.

�43�

For zero frequency and equal left and right tunneling rates
��L1=�L2 and �R1=�R2� this also coincides with previous
results,93 see also Table I 
column �iv�� in Ref. 109. From the
positivity of the tunneling rates it is obvious that the above
Fano factor is always sub-Poissonian, which well matches
our expectations for the infinite-bias limit. These results are
well confirmed by the numerical solution, see Fig. 9 for the
zero-frequency Fano factor. Note that we consider only the
right-associated noise here, which only at zero frequency
coincides88 with the full frequency-resolved noise.

It follows from Eqs. �41� and �43� that for equal tunneling
rates the frequency-dependent noise in the high-bias cou-
lomb blockade and in the infinite-bias limit will essentially
be featureless with a single minimum. Numerically, we see
that for equal tunneling rates this extends to the whole bias
range �not shown�. However, when we assume varying tun-
neling rates, we may find features in the frequency-
dependent noise for the CBHB regime—this can be found
analytically from Eq. �41�. These findings suggest that a fea-
ture in the frequency-dependent noise is not a unique indica-
tor for coherent dynamics in the system. This would require
the evaluation of the full noise, which is the weighted sum of
noise at left and right junction and cross correlators, see, e.g.,
in Ref. 88. This is beyond the scope of this paper.

B. BMS quantum master equation

When the master equation is considered, we assume en-
ergetic degeneracy 
1=
2	
 throughout. For simplicity, we
assume �L=��L1�L2 and �R=��R1�R2, which corresponds to
the flat band limit. In the infinite-bias limit, we obtain the
general stationary master equation current

I� =
�L1�R1 + �L2�R2 + 2��L1�L2�R1�R2

�L1 + �L2 + �R1 + �R2
�44�

which does not necessarily coincide with the corresponding
infinite-bias rate-equation result, Eq. �40�. For general tun-
neling rates we may also evaluate the frequency-dependent
Fano factor analytically, which is however too lengthy to be
reproduced here. However, when we assume some symme-
tries, the expressions simplify significantly. For example,
when of the four tunneling rates, two pairs are mutually
equal, one has three different combinations, which we will
label as �compare also Fig. 2� �I� left-right symmetric cou-
pling �L1=�R1	�1 with �L2=�R2	�2, �II� top-down sym-
metric coupling �L1=�L2	�L with �R1=�R2	�R, and �III�
antisymmetric coupling �L1=�R2	�a with �L2=�R1	�b
�compare also Refs. 71 and 90� in the following. Note that
naturally, when all tunneling rates are the same, the above
three cases coincide. In addition, we note that in all three
cases, the infinite-bias master equation current, Eq. �44�, and
the infinite-bias rate-equation current, Eq. �40�, coincide.

1. Symmetric configurations: I and II

Under the symmetry assumptions I and II, the frequency-
dependent infinite-bias Fano factor reduces to

FR,I
� �	� =

2��1 + �2�2 + 	2

4��1 + �2�2 + 	2 ,

FR,II
� �	� = 1 −

8�L�R

4��L + �R�2 + 	2 . �45�

Also when the corresponding symmetries are used, these
frequency-dependent Fano factors differ at finite frequency
from the corresponding rate-equation result, Eq. �43�, the
Fano factors only coincide at zero frequency.

It should be noted that for exact symmetry assumptions I
and II, the null space of the Liouville superoperator L�0�
becomes two dimensional for the complete bias range.

Consequently, the steady state and the observables would
depend on the choice of the initial state �IS� in that
case.� However, when we also consider couplings between
the subspaces, we obtain an unique steady state, which is for
symmetry assumptions I and II analytically continued into
Eq. �45�. When symmetry assumptions I and II coincide �all
tunneling rates equal�, this becomes obvious in the basis
�00,00,

1
2 
�01,01+�10,10+�01,10+�10,01�,

1
2 
�01,01+�10,10−�01,10

−�10,01�, �11,11,
1
�2


�01,01−�10,10�,
1
�2


�01,10−�10,01�, where the
Liouville superoperator L��� decouples into three 2�2
blocks, two of which have a null space as �→0. Therefore,
the above infinite-bias Fano factors should be interpreted as
being valid for approximate symmetries I and II. For exactly
fulfilled symmetries one will obtain two partial currents and
Fano factors. Since the finite-bias behavior is especially in-
teresting, we will discuss these subtleties in the following at
V=U: in addition, we assume vanishing single-particle ener-
gies 
1=
2=0 for simplicity. When one is faced with a two-
dimensional null space of the Liouville superoperator, one

FIG. 9. �Color online� Zero-frequency Fano factor �right� versus
bias voltage for the parallel double dot for different single-particle
energies. The parameters correspond to those of Fig. 8. The peak of
the zero-frequency Fano factor at small bias voltages results from
thermal �Nyquist� noise.
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has to choose the null-space vectors orthogonal and of course
normalize with respect to the trace. Then, we obtain the cur-
rents in the two subspaces �A� and �B�

II,A
V=U =

�1 + �2

2
tanh��U

4
� ,

II,B
V=U =

�1 + �2

2

sinh��U

4
�

cosh�3�U

4
� �46�

for symmetry assumption I and similarly for symmetry as-
sumption II

III,A
V=U = 2

�L�R

�L + �R
tanh��U

4
� ,

III,B
V=U = 2

�L�R

�L + �R

sinh��U

4
�

cosh�3�U

4
� . �47�

Naturally, for completely symmetric tunneling rates, the cur-
rents in the respective subspaces �A� and �B� of Eqs. �46� and
�47� coincide. Regarding the noise, we obtain the frequency-
dependent Fano factors for symmetry assumption I

FI,A
V=U�	� =

2��1 + �2�2 + 	2

4��1 + �2�2 + 	2coth��U

4
� ,

FI,B
V=U�	� =

N0 + N1	2

D0 + D1	2 , �48�

where we have used N0=2��1+�2�2�2−3y+6y2−3y3+2y4�,
N1=1−y+4y2−y3+y4, D0=4��1+�2�2�y−1��1+y3�,
D1= �y−1��1+y3� with y	e�U/2 in the last line. Similarly,
we obtain for symmetry assumption II

FII,A
V=U�	� =

16�L
2�Ry + 2�R	2y + �LC0�1 + y2�

�L
4��L + �R�2 + 	2��y2 − 1�
,

FII,B
V=U�	� =

N0 + N1	2

�L
4��L + �R�2 + 	2��y − 1��1 + y3�
, �49�

where we have used in the first equation C0= 
4��L
2 +�R

2�
+	2� and in the last line N0=4�L
2�L�RP0+ ��L

2 +�R
2�P1�,

N1=2�Ry2+�LP1 with the polynomials P0=1−2y+4y2

−2y3+y4, P1=1−y+2y2−y3+y4, and also as before
y	e�U/2. Also for the Fano factors, the expressions in Eqs.
�48� and �49� coincide in their respective subspaces �A� and
�B� for completely homogeneous tunneling rates.

2. Antisymmetric configuration III

Under the assumption of an antisymmetric configuration
we obtain an unique steady state—with the exception of
completely homogeneous couplings.

The infinite-bias Fano factor reads

FR,III
� �	� =

N0 + N1	2 + N2	4 + 	6

D0 + D1	2 + D2	4 + 	6 , �50�

where we have used the short-hand notations
N0= ��a−�b�4��a

2+�b
2�, N1= �3�a+�b���a+3�b���a

2+�b
2�,

N2=3��a+�b�2 and D0= ��a−�b�4��a+�b�2, D1= ��a−�b�4

+2��a+�b�2��a
2+6�a�b+�b

2�, D2=3�a
2+14�a�b+3�b

2. It co-
incides with the corresponding rate-equation result, Eq. �43�,
only at zero frequency.

The situation becomes sophisticated when we consider
the finite-bias case V=U together with symmetry assumption
III, where ��a��b provided� one only has one stationary
state—which is also the generic case for arbitrary couplings.
In this case, the Lamb-shift terms directly affect the current:
formally, this is visible in the appearance of digamma func-
tions ��x� �resulting from the Cauchy principal value inte-
grations, see Appendix C� in the stationary current. With the

replacements y	e�U/2, �̃	�a+�b, �̃	�a−�b, and �̃�y�
	R��
 1

2 + i ln�y�
2� �−�
 1

2 −3i ln�y�
2� �� we obtain with symmetry

assumption III at V=U and 
1=
2=0 for the current after a
tedious and lengthy calculation

IIII
V=U =

8�a�b�̃y�y − 1��y2 + 1�
�2�1 + y − y2 + y3��3 − y + y2 + y3� + �1 + y3�2�̃2�y��

�2�̃2P1�3 − y + 4y2 + y4 + y5�2 + P1
3P2

2
− 4�̃2yP2 + �̃2�1 + 4y − 2y2 + 4y3 + y4���̃2�y�
, �51�

where we have abbreviated the polynomials P1=1+y and
P2=1−y+y2. This is consistent with previous numerical
results.71 For low temperatures �large �U�, the above expres-
sion behaves asymptotically as

IIII
V=U ⇒

�U�1 8�a�b

�a + �b
e−�U/2, �52�

i.e., the current is exponentially suppressed for low tem-
peratures. The numerical solution confirms this result and

shows that it goes along with a negative differential
conductance,71,83 which is—exact energetic degeneracy

1=
2 provided—quite robust with respect to the remaining
parameters, see Fig. 10. For example, assuming nonvanish-
ing single-particle energies 
1=
2�0, we see that the current
suppression valley is simply shifted away from the origin.
Even when the symmetry assumptions regarding the cou-
pling strengths are not obeyed, the current suppression is
qualitatively robust. When we evaluate the zero-frequency
Fano factor, we observe huge Fano factors in the current
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suppression region, see Fig. 11. Note however, that super-
Poissonian �but significantly smaller� Fano factors may also
be observed in the rate-equation case �due to dynamical
channel blockade as discussed before�, compare also the
dashed lines in Fig. 10.

At the point of completely homogeneous tunneling rates,
we can obtain currents and Fano factors for the whole bias
range

IA = � tanh��V

4
� ,

IB = �

sinh��V

2
�

cosh
�U� + cosh��V

2
� ,

FR,A�0� =
1

2
coth���V�

4
� ,

FR,B�0� =
�1 + x2 + 2xy2�
2x + �1 + x2�y2�

4x�x + y2��1 + xy2�sinh���V�
2
� , �53�

where we have abbreviated x	e�V/2 and y	e�U/2 in the last
line, see Fig. 12. For V=U, the frequency-dependent Fano
factors can be derived from Eq. �48� when �1=�2=� or
from Eq. �49� when �L=�R=�.

The alert reader will have noticed that in case of complete
coupling symmetry �L1=�L2=�R1=�R2=� the currents II

and III and the Fano factors FR,I�	� and FR,II�	� coincide in
their respective subspaces, compare Eqs. �46�, �47�, and �53�.
However, the antisymmetric current IIII

V=U does neither con-
verge to the current of subspace �A� nor to the current of
subspace �B� when complete symmetry is assumed, compare
Eq. �51�. This demonstrates that for near degenerate tunnel-
ing rates, the actual current will rather be a superposition of
the partial currents. Indeed, one can find convex linear com-
binations of the two stationary states that reproduce the cur-
rent IIII ��a=�b→�, compare also Fig. 12. An interesting conse-
quence is that in this case �decoupling subspaces with
different partial currents�, it follows directly from the defini-
tion of the cumulant generating function, Eq. �7�, that the
�zero-frequency� Fano factor must diverge �telegraph noise�,
which is also seen in the numerical investigations, see Fig.
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FIG. 10. �Color online� Markovian stationary current predicted
by the BMS quantum master equation for exact degeneracy 
1=
2

	
. The parameters that are the same for all curves are U=5.0,
�L1=0.12, �R1=0.152, �R2=0.12, and �=10. The other parameters
have been varied as follows: case A �black�: 
=0.0, �L2=0.152, case
B �red�: 
=1.0, �L2=0.152, and case C �blue�: 
=0.0, �L2=0.052.
The thin dashed lines show the corresponding rate-equation results.
The nearly complete suppression of the current for large �U at V
�U is for exact degeneracy quite robust with respect to the remain-
ing parameters.
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FIG. 11. �Color online� Zero-frequency Fano factor predicted by
the quantum master equation for exact degeneracy 
1=
2	
. Pa-
rameters and color coding are the same as in Fig. 10. The current
suppression in the quantum master equation goes along with highly
super-Poissonian Fano factors.
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FIG. 12. �Color online� Plot of the stationary currents IA and IB

for the decoupling subspaces for �=0.12 together with the �unique�
stationary current obtained for �a=�=0.12 and different values of
�b versus bias voltage. Other parameters have been chosen as �
=10.0, U=5.0, and 
1=
2=0. For nearly equal tunneling matrix
elements, the actual current �solid line� is a convex superposition of
the partial currents �dashed lines�.
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13. Note that this divergence will also hold for the higher
cumulants.39

It should be stressed that the huge Fano factors observed
in Fig. 13 around the Coulomb-blockade region are obtained
for highly symmetric systems. For reasonable parameter val-
ues, they are by orders of magnitude larger than the super-
Poissonian Fano factors observed for asymmetric systems.92

In the frequency-dependent Fano factor, this divergence goes
as a very narrow and tall peak within a large valley at low
frequencies, see Fig. 14. This is similar to the spectral Dicke
effect.99,110 An experiment will average over a finite fre-
quency interval determined by the inverse measurement

time. Since the area below the peak remains approximately
constant �compare the scaling of height and width with re-
spect to the asymmetry � in Fig. 14�, the super-Poissonian
behavior can, in principle, be resolved. However, when the
frequency interval of the measurement is too large, the valley
may dominate the super-Poissonian peak and one may obtain
a sub-Poissonian Fano factor. Therefore, the inverse mea-
surement time should scale with the peak width.

C. Telegraph statistics—distribution function Pn(t)

It is quite instructive to study the impact of these results
on the time-dependent probability distribution Pn�t�. Given
the cumulant-generating function, it is unfortunately non-
trivial to obtain Pn�t� via the inverse Fourier transform of Eq.
�7�, since that would involve an integral over a highly oscil-
latory function. However, when the cumulant-generating
function is highly peaked in the interval �� �−� ,+��, we
may calculate it approximately via the saddle-point approxi-
mation �also termed stationary phase approximation, see,
e.g., Refs. 18, 34, and 111�

Pn�t� =
1

2�



−�

+�

eS��,t�−in�d�

�
eS���,t�−in��

2�



−�

+�

eS����,t��� − ���2/2d� , �54�

where we see that the remaining integral in the above equa-
tion just corresponds to a normalization of the distribution,
since it does not depend on n. The position �� of the inte-
grand peak is determined by the equation

��S��,t���=�� = in , �55�

which only admits purely imaginary solutions for ��. Since
Eq. �55� is rather demanding to solve numerically, we have
computed n from Eq. �55� and the corresponding distribution
Pn�t��exp�S��� , t�− in��� parametrically as a function of all
imaginary ��. Normalization was then performed afterwards,
see Fig. 15. Instead of obtaining a bimodal distribution as
might be naively expected from the existence of two differ-
ent currents in the subspaces A and B, we see that the actual
probability distribution is unimodal.47 The mean of the
distributions—divided by the snapshot time t—yields the
current at the corresponding bias voltage, which is well con-
sistent with the current-voltage characteristics in Fig. 12. The
huge zero-frequency Fano factors for bias voltages below the
Coulomb interaction strength—compare Fig. 13—are re-
flected in extremely large widths for the corresponding bias
range. Note however that Fig. 15 shows a finite time snap-
shot which does not capture the large time limit of the zero-
frequency Fano factor.

D. Coarse-graining results

Although the BMS currents do not display completely
unphysical behavior, it is disturbing that the BMS Liouvillian
behaves discontinuously as a function of its parameters,
which also transfers to observables such as the current. One
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FIG. 13. �Color online� Logarithmic plot of the Fano factor
FR�0� versus bias voltage −20.0�V�+20.0 for different values of
�b. Parameters and color coding correspond to Fig. 12. When the
partial currents do not coincide, the Fano factor diverges for �a
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Fano factors �dashed red and blue lines�.

FIG. 14. �Color online� Frequency-dependent Fano factor for
symmetry assumption III at the maximum current suppression V
=U for different coupling asymmetries �. Parameters have been
chosen as 
1=
2=0, �=10, U=5, �a=�−�, and �b=�+�, where
�=0.12. The divergence of the actual zero-frequency Fano factor
for �→0 manifests itself as an extremely slim peak within a large
valley around the origin. This is similar to the spectral Dicke effect
�Ref. 110�.
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may argue that in a realistic setting, there will always exist
lifted degeneracies, such that for the stationary state the re-
sult of the rate equation is relevant. In this case, the DCG
approach will finally approach the BMS rate-equation cur-
rent but the BMS master equation current will appear as a
metastable state—regardless of the initial state. These expec-
tations are also found in the numerical solution, see Fig. 16.
For small times t=�, the transient behavior resulting from the
initial state is still found in the stationary current �solid lines
in Fig. 16�, but the relaxation drags the current toward the
master equation result. For times larger than the inverse level
splitting, we observe a relaxation back toward the rate-
equation result �which had also been chosen as the initial
state in Fig. 16�. However, as the time scales of relaxation
��−1=100� and the inverse level splitting ��−1=1000� do not
completely separate, we do not observe a complete decay
into the master equation result. The inset in Fig. 16 shows
that this behavior is independent of the particular initial state
and that for separating time scales a complete decay into the
metastable state is observed.

Inspired by the success of finite maximum coarse-
graining times, Eq. �21�, for the serial model in Sec. VI B,
we have also calculated the stationary current as a function
of the coarse-graining time. We find that the finite coarse-
graining �FCG� approach also predicts the qualitative effects
of the BMS master equation in the stationary state, see Fig.
17. By varying the coarse-graining time we actually observe
a smooth crossover from the quantum master equation re-
sults �small coarse-graining times� toward the rate-equation

results �large coarse-graining times�. This directly demon-
strates that the singular coupling limit is not the only master
equation method yielding Lindblad-type master equations
that smoothly interpolates between rate-equation and quan-
tum master equation results.71 Note that alternatively, we
could have taken the coarse-graining time as constant and
modified the level splitting 
1−
2, compare also Fig. 7. Pro-
vided that the measurement time exceeds the �nonvanishing�
inverse level splitting, experiments should be able to back up
either the FCG results �e.g., when a negative differential con-
ductance is measured� or the DCG results �steplike current
voltage characteristics� just by measuring the current in a
fixed time interval.

VIII. SUMMARY

We have studied single-electron transport through serial
and parallel configurations of two interacting levels. We con-
sidered the weak-coupling limit with arbitrary Coulomb in-
teraction strengths and bias voltages. Our calculations in the
energy eigenbasis included couplings between populations
and coherences, which are mediated by the Lamb shift.

We have derived the n-resolved quantum master equation
by virtue of an auxiliary detector at one junction. Obtaining
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FIG. 15. �Color online� Normalized probability distributions
Pn�t� for different bias voltages versus the number of tunneled par-
ticles n obtained via the saddle-point approximation, Eq. �54�.
Other parameters have been chosen as U=5, �=10, t=20 000, and
�a=�−�, �b=�+�, where �=0.12 and �=10−5. The inset relates
the probability distribution for V=9.7 with the corresponding partial
currents �lines with symbols� that one would obtain in subspaces A
and B for �=0 �cf. Ref. 47�. For bias voltages near the current
suppression, the distribution becomes extremely flat—consistent
with the huge super-Poissonian Fano factors. In contrast, for large
bias voltages we approach the infinite-bias distribution, which is
characterized by a finite width. For V=U, the exponential suppres-
sion of the current is manifest as an exponentially decaying distri-
bution �straight line�.
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FIG. 16. �Color online� Plot of the time-dependent DCG current
versus bias voltage for different times. The other parameters were
chosen as 
1=+0.0005, 
2=−0.0005, U=5.0, �=10.0, �L1=�R2

=0.12, and �L2=�R1=0.152. In the plot, the initial condition has
been chosen as the stationary density matrix of the BMS rate equa-
tion, whereas the inset shows the actual time dependence of the
current at V=U �compare the vertical green dashed line� for differ-
ent initial conditions: the steady-state density matrix of the BMS
rate equation �SS-RE�, the stationary density matrix of the BMS
master equation �SS-QME�, the empty system, and the doubly oc-
cupied system. For times smaller than the inverse level splitting
�E−1=1000 �thin solid lines�, we observe a transient crossover
from the BMS rate-equation current �bold dashed red line� toward
the BMS master equation current �bold dashed blue line�. When the
time approaches and exceeds the inverse level splitting, this trend is
reversed �thin dashed lines�, until one recovers the initial dynamics.
The inset shows that this behavior is qualitatively independent on
the initial state �IS� and that for significantly smaller splittings
�−1=105 �solid lines� in comparison to �−1=103 �dotted lines� the
two transient processes do well separate.
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the Liouville superoperator by coarse graining generally
leads to Lindblad-type master equations. The BMS approxi-
mation naturally arises in the limit of infinite coarse-graining
times. As a remarkable property, we find that it leads to
equilibration of both temperatures and chemical potentials
between system and reservoir for zero bias. Unfortunately,
the BMS Liouvillian depends discontinuously on the param-
eters of the system Hamiltonian: for a degenerate spectrum,
coherences couple to the populations in the system energy
eigenbasis, whereas for a nondegenerate system spectrum,
coherences and populations evolve independently. We dem-
onstrate that for finite coarse-graining times this is not the
case.

In the serial configuration, we observe a steplike increase
in the current versus bias voltage caused by additional trans-
port channels beyond the Coulomb-blockade regime. How-
ever, the neglect of coherences is only valid for large values
of the interdot tunnel coupling: for vanishing interdot tunnel-
ing, the BMS current remains finite, which is clearly un-
physical. With coherences �finite coarse-graining times�, the
stationary current vanishes quadratically for small interdot
tunneling in agreement with exact results. In the Coulomb-
blockade regime, the noise spectrum at one junction may
display additional minima, and the zero-frequency Fano fac-
tor indicates bunching for highly asymmetric lead couplings.

In the parallel case, one may also obtain super-Poissonian
Fano factors for the rate-equation case �neglect of coher-
ences� for asymmetric lead couplings due to dynamical chan-
nel blockade. In contrast, the quantum master equation pre-
dicts giant Fano factors for symmetric configurations due to
interference effects. This goes along with exponential current
suppression for sufficiently low temperatures in the
Coulomb-blockade regime. For perfectly symmetric lead
couplings, the quantum master equation dynamics decouples
into two independent subspaces of physical relevance, which
bears strong similarities to classical telegraph signals. In the

frequency-dependent noise spectrum, this zero-frequency di-
vergence appears as a �-like peak, similar to the spectral
Dicke effect. The time-dependent DCG current displays in-
triguing non-Markovian features such as the temporary dwell
in a metastable state before eventually relaxing into the BMS
steady state. However, the final decay will only take place
when the maximum coarse-graining time is larger than the
inverse splitting between the singly charged eigenstates.

Future research should clarify the question which maxi-
mum optimal coarse-graining time should be chosen in order
to obtain the best stationary observables. I.e., so far we only
have discussed the effect of finite coarse-graining times
qualitatively. A direct comparison of the FCG approach
within exactly solvable models might give a quantitative es-
timate on the maximum coarse-graining time �max and the
evolution ��t� 
see Eq. �21��.
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APPENDIX A: SERIAL COARSE-GRAINING
LIOUVILLIAN

By transforming the bath coupling operators in Eq. �27� to
the interaction picture we obtain with using the tunneling
rates, Eq. �28�, the bath correlation functions. The Fourier
transforms, Eq. �19�, of the nonvanishing bath correlation
functions are simply given by

�12�	� = �L�	�fL�	� ,

�21�	� = �L�− 	�
1 − fL�− 	�� ,

�34�	� = �R�	�fR�	� ,

�43�	� = �R�− 	�
1 − fR�− 	�� . �A1�

When we make use of the relations 
�t1− t2�= 1
2 
1

+sgn�t1− t2�� and also 
�t2− t1�= 1
2 
1−sgn�t1− t2��, we can

insert the even and odd Fourier transforms, Eq. �19�, into the
coarse-graining Liouvillian, Eq. �17�. The Liouvillian sepa-
rates into a dissipative 
��ij�	� and a unitary �Lamb-shift�
part ��ij�	��,
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FIG. 17. �Color online� Plot of the stationary current versus bias
voltage for different coarse-graining times �. For small coarse-
graining times, we recover the qualitative behavior of the BMS
master equation, whereas for large coarse-graining times, the BMS
rate-equation result is approached. The other parameters have been
chosen as 
1=+0.0005, 
2=−0.0005, U=5.0, �L1=�R2=0.12, �L2

=�R1=0.155, and �=10.0.
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d	
1
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0

�

dt1dt2e+i	�t1−t2��+ �12�	��+ A2�t2��A2
†�t1� −

1

2
�A2

†�t1�A2�t2�,��� − i��12�	�
2i

A2
†�t1�A2�t2�,�� + �21�	�

��+ A1�t2��A1
†�t1� −

1

2
�A1

†�t1�A1�t2�,��� − i��21�	�
2i

A1
†�t1�A1�t2�,�� + �34�	��+ A4�t2��A4

†�t1� −
1

2
�A4

†�t1�A4�t2�,���
− i��34�	�

2i
A4

†�t1�A4�t2�,�� + �43�	��+ A3�t2��A3
†�t1� −

1

2
�A3

†�t1�A3�t2�,��� − i��43�	�
2i

A3
†�t1�A3�t2�,��� . �A2�

In Appendix C we demonstrate how for Lorentzian-shaped
bands ��	� the odd Fourier transforms �ij�	� can be ex-
tracted analytically from the even Fourier transforms �ij�	�
given in Eq. �A1�. The time dependence of the system op-
erators arises from the interaction picture, it can always be
written as a sum over oscillatory terms �eigenoperator
decomposition62,81�. Therefore, the time integrations in Eq.
�A2� can be performed analytically, e.g., as



0

�

ei�	−	a�t1dt1 = �ei�	−	a��/2 sinc��	 − 	a�
�

2
� �A3�

and similarly for the other integral, where the band filter
function sinc�x�	 sin�x�

x has been introduced. Due to the two
time integrations, products of two band filter functions arise,
and in the large � limit we may use for discrete 	a ,	b the
identity81

��	a,	b� 	 lim
�→�

�

2�
sinc��	 − 	a�

�

2
�sinc��	 − 	b�

�

2
�

= �	a,	b
��	 − 	a� , �A4�

where �	a,	b
denotes the Kronecker symbol and ��	−	a� the

Dirac � distribution. Thus, in the limit �→� also the fre-
quency integral in Eq. �A2� collapses and we obtain the BMS
Liouvillian.

APPENDIX B: PARALLEL COARSE-GRAINING
LIOUVILLIAN

To obtain the interaction picture, it is advantageous62 to
expand the system coupling operators in Eq. �30� into eigen-
operators of the system Hamiltonian, as, for example, d1�t�
=e+iHSt�d1d2

†d2+d1d2d2
†�e−iHSt=e−i�
1+U�td1d2

†d2+e−i
1td1d2d2
†

and similarly for the other operators. With the tunneling

rates, Eq. �31�, we obtain for the Fourier transforms, Eq.
�19�, of the nonvanishing bath correlation functions the result

�12�	� = �R1�	�fR�	�, �14�	� = �R�	�fR�	� ,

�21�	� = �R1�− 	�
1 − fR�− 	�� ,

�23�	� = �R
��− 	�
1 − fR�− 	�� ,

�32�	� = �R
��	�fR�	�, �34�	� = �R2�	�fR�	� ,

�41�	� = �R�− 	�
1 − fR�− 	�� ,

�43�	� = �R2�− 	�
1 − fR�− 	�� ,

�56�	� = �L1�	�fL�	�, �58�	� = �L�	�fL�	� ,

�65�	� = �L1�− 	�
1 − fL�− 	�� ,

�67�	� = �L
��− 	�
1 − fL�− 	�� ,

�76�	� = �L
��	�fL�	�, �78�	� = �L2�	�fL�	� ,

�85�	� = �L�− 	�
1 − fL�− 	�� ,

�87�	� = �L2�− 	�
1 − fL�− 	�� . �B1�

As these Fourier transforms directly determine the dissipa-
tive part of the Liouvillian, this also demonstrates that one
cannot always identify the latter with the real part of the
Liouvillian 
the tunneling rates �R�	� and �L�	� may
be chosen complex valued�. Making use of 
�t1− t2�= 1

2 
1
+sgn�t1− t2�� and 
�t1− t2�= 1

2 
1−sgn�t1− t2�� we can insert
both even and odd Fourier transforms, Eq. �19�, into the
coarse-graining Liouvillian, Eq. �17�. This leads to
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We demonstrate in Appendix C how for Lorentzian-shaped
bands ��	� the odd Fourier transforms �ij�	� can be ex-
tracted analytically from the even Fourier transforms �ij�	�
given in Eq. �B1�. Similarly to the discussion in Appendix A
we may obtain the BMS limit analytically by letting �→�.

APPENDIX C: EVALUATION OF LAMB-SHIFT
TERMS

Given the Fourier transform of the bath correlation func-
tions �ij�	�, we can obtain the odd Fourier transform for the
conventions chosen in Eq. �19� via

�ij�	� =
1

2�



−�

+�

d	̄�

−�

+�

d�e−i�	−	̄�� sgn�����ij�	̄�

=
i

�
P


−�

+� �ij�	̄�
	̄ − 	

d	̄ , �C1�

where P denotes the Cauchy principal value. Thus, the Lamb

shift is equivalent to the exchange field in Refs. 83 and 93.
With the relation tanh��y�=2 /�I��1 /2+ iy� 
where ��z�
denotes the digamma function� we can write

f�	̄� =
1

e��	̄−�� + 1
=

1

2
�1 − tanh���	̄ − ��

2
��

= I
1

2
�i +

2

�
��1

2
− i

��	̄ − ��
2�

�� ,

1 − f�− 	̄� = I
1

2
�i +

2

�
��1

2
− i

��	̄ + ��
2�

�� , �C2�

which is valid for all 	̄ on the real axis.
Since the integral in Eq. �C1� goes along the real axis

only, we can exploit the above identities in the Kramers-
Kronig relation
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d	� = i���	� + 2�i �
k:I	k�0

Res� ��	��
	� − 	

�
	�=	k

,

�C3�

which is valid whenever the �holomorphic� function ��	�
decays sufficiently fast in the upper complex half plane and
where 	k denote the poles of ��	� in the upper complex half
plane. Now, the imaginary part of the above Kramers-Kronig
relation reads

IP

−�

+� ��	��
	� − 	

d	� = �R��	�

+ 2�R �
k:I	k�0

Res� ��	��
	� − 	

�
	�=	k

,

�C4�

and can be directly related to Eq. �C1� when we choose the

function ��	��= 1
2 �i+ 2

��
 1
2 − i ��	�−��

2� ���̃��	��, see also Eq.

�C2�. The additional factor �̃��	�� arises from the �in real-
ity� frequency-dependent tunneling rates, compare the Fou-
rier transforms in Eqs. �A1� and �B1�, respectively. For sim-

plicity, we take ���	�=���̃�	� and assume a Lorentzian
dependence

�̃�	� =
�2

�	 − 
�2 + �2 ⇒
�→�

1. �C5�

The digamma function ��z� has poles for nonpositive in-
tegers. Therefore, when I	̄�0 �the upper complex half
plane� the function 1

2 �i+ 2
��
 1

2 − i ��	̄+��
2� �� defined in Eq. �C2�

would behave analytically, such that one would not have to
evaluate residues. The digamma function alone would not
decay asymptotically but convergence is ensured by the
Lorentzian cutoff, Eq. �C5�. This Lorentzian cutoff leads to a
single pole at 	1=
+ i� in the upper complex half plane. In
principle, more complicated spectral densities can be fitted
by a sum of many Lorentzians.37 The situation is depicted in
Fig. 18.

With these considerations we can express the Lamb-shift
terms in digamma functions, where the Fourier transforms in
Eqs. �A1� and �B1� lead to terms like
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and also terms like

�b 	 P
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For nearly flat tunneling rates we observe a logarithmic di-
vergence as �→�. These logarithmic counterterms cannot
always be neglected: for the parallel configuration, we do
indeed observe their cancellation in the Liouvillian, whereas
for the serial configuration they do not cancel. In the latter
case, the neglect of these terms would even lead to negative
density matrices. We suspect that the reason for this lies in
the discrepancy between the localized and the energy eigen-
basis.

FIG. 18. �Color online� Poles of the function ��	�� / �	�−	�
with ��	��= 1

2 �i+ 2
��
 1

2 − i ��	�−��
2� ���̃�	�� in the complex plane. The

digamma function contributes poles on the lower imaginary axis,
whereas the Lorentz function, Eq. �C5�, has two complex-conjugate
poles of first order, one of which lies within the integration contour.
The integral along the large half circle vanishes due to the Lorent-
zian cutoff, the integral along the real axis corresponds to the
Cauchy principal value of the left-hand side of Eq. �C4�, and the
integral along the small half circle yields the first term on the right-
hand side of Eq. �C4�. The situation can be treated analogously for

I�̃�	�= 
1− f�−	���̃�−	�.
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